تبلیغات
دانش ما - ریاضی

کنکور و نمونه سوال
یک عدد عجیب
تاریخ ثبت: 07/08/1387

یک عدد عجیب

یک نفر از اساتید دانشکده شهر آتن پایتخت یونان چندی پیش عددی را کشف کرد که خصایص عجیبی دارد.
آن عدد:142857 میباشد.
اگر عدد مذکور را در دو ضرب کنیم، حاصل: 285714 میشود! (به ارزش مکانی 14 توجه کنید).
اگر این عدد را در سه ضرب کنیم حاصل: 428571 میشود!(به ارزش مکانی 1 توجه کنید).
اگر این عدد را در چهار ضرب کنیم حاصل: 571428 میشود!( به ارزش مکانی 57 توجه کنید).
اگر این عدد را در پنج ضرب کنیم حاصل: 714285 میشود!(به ارزش مکانی 7 توجه کنید).
اگر این عدد را در شش ضرب کنیم حاصل: 857142 میشود! (سه رقم اول با سه رقم دوم جا بجا شده)
اگر این عدد را در هفت ضرب کنیم حاصل: 999999 میشود!
لطفا" ضربهای بالا را خود شما نیز انجام دهید و حاصل را با عدد اصلی مقایسه کنید.


 

آموختن ضرب اعداد به صورت ذهنی :
تاریخ ثبت: 14/09/1387

قاعده کلی : ضرب ذهنی دو عدد که مجموع رقم یکان آنها ده باشد و سایر ارقام دو عدد با هم برابر باشند به صورت زیر انجام میگیرد.
ابتدا دو رقم یکان را در هم ضرب نموده و عدد حاصله را به عنوان رقم یکان و دهگان حاصاضرب ، کنار میگذاریم ، ( دقت شود که اگر رقم یکان یکی از دو عدد 1 بود باید سمت راست حاصل ضرب حتما" عدد صفر قرار گیرد ) سپس ، به باقیمانده ارقام عدد 1 را اضافه نموده و در خودش ضرب میکنیم.

مثال : حاصل 107 * 103 چقدر است؟
جواب : ابتدا 3 را در 7 ضرب نموده که میشود 21 ، سپس به 10 یک واحد اضافه میکنیم که میشود 11 و اگر 11 را در خود عدد ( یعنی 10 ) ضرب کنیم میشود 110 پس جواب این حاصلضرب میشود : 11021

مثال بعدی : حاصل 99 * 91 چقدر است؟
جواب : ابتدا 9 را در 1 ضرب میکنیم که میشود 9 ( البته طبق نکته فوق الذکر، باید 09 در نظر بگیریم ) ، سپس به عدد 9 یک واحد اضافه میکنیم که میشود 10 و اگر 10 را در خود عدد ( یعنی 9 ) ضرب کنیم میشود 90 ، بنابراین جواب این حاصلضرب 9009 خواهد بود.

 



بی‌نهایت در ریاضی به چه معناست ؟
infinite
طبقه بندی : ریاضی - مقالات
بینهایت مفهومی است که در رشته‌های مختلف ریاضیات (با تعبیرات مختلف) به‌کار می‌رود و معمولاً به معنای «فراتر از هر مقدار» است. معمولاً ∞نشانه بینهایت در ریاضیات است.
در آنالیز حقیقی بینهایت به معنای حدی بی‌کران است.  ∞ →x یعنی متغیر x فراتر از هر مقدار در نظرگرفته شده رشد می‌کند.
در آنالیز مختلط نیز همین علامت با همین نام به‌کار می‌رود. در این رشته ایكس به سوی بی نهایت یعنی قدر متغیر مختلط x (که آن را با | x | نشان می‌دهند) بیش از هر مقدار در نظر گرفته شده رشد می‌کند.
در نظریه مجموعه‌ها مفهوم بینهایت با اعداد ترتیبی و اعداد اصلی مربوط است. عدد اصلی مجموعه اعداد طبیعی را با  0 ψ نمایش می‌دهند و می‌خوانند «الف صفر» (از اولین حرف الفبای عبری به‌نام «الف»). این عدد «تعداد» عددهای مجموعه اعداد طبیعی را نشان می‌دهد، که «بینهایت» است. جالب است که بدانید که عدد اصلی مجموعه‌های N و Z و Q یکسان هستند ولی عدد اصلی مجموعه R برابر عددی است که آن را الف می‌‌خوانند. خوب است بدانید که الف برابر دو به توان الف صفر می‌‌باشد. بینهایت دارای دو مفهوم فیزیکی و ریاضی است که کاملاً با یکدیگر متفاوتند.
مفهوم فیزیکی بینهایت، دارای تعریف دقیقی نیست و در جای‌های مختلف دارای تعاریف متفاوت است. به عنوان مثال، می‌‌گوییم که اگر جسم در کانون عدسی محدب قرار گیرد، تصویر در بینهایت تشکیل می‌شود. حال دو عدسی با فواصل کانونی متفاوت در نظر بگیرید و اجسامی را روی کانون این دو عدسی قرار دهید. طبق قاعده، تصاویر هر دو در بینهایت تشکیل می‌شود. اما قطعا تصویر این دو دقیقا در یک نقطه تشکیل نمی‌شود؛ یعنی بینهایت برای این دو عدسی متفاوت است.

به عنوان مثالی دیگر، دو منبع گرمایی، مثلاً دو اتو با درجه حرارتهای متفاوت را در نظر بگیرید. فاصله‌ای که در آن، دیگر اصلاً گرمای اتو را احساس نکنیم، برای این دو اتو متفاوت است، به عبارت دیگر، بینهایت برای این دو اتو تفاوت دارد.
اما مفهوم بینهایت، در ریاضیات کاملاً متفاوت با بینهایت فیزیکی است. علامت بینهایت در ریاضیات، است. در ریاضیات می‌‌گوییم: «بینهایت مقداری است که از هر مقدار دیگر بیشتر است.» به عنوان مثال، بینهایت را در اعداد طبیعی در نظر می‌‌گیریم و می‌‌گوییم: بینهایت از ۱، ۱۰، ۱۰۰، ۱۰۰۰۰۰۰۰۰۰۰ و هر عدد دیگر که در نظر بگیرید، بزرگ‌تر است.
این مفهوم، دقیقا همان مفهومی است که در «حد در بینهایت» در نظر گرفته می‌شود. به عنوان مثال، در تابع، وقتی می‌گوییم، یعنی این که x از هر عدد انتخاب شده بزرگ‌تر است.
یکی از مهم‌ترین مباحثی که بینهایت درآن دارای کاربرد است، نظریه مجموعه هاست. به عنوان مثال می‌‌دانیم که تعداد اعضای مجموعه اعداد حقیقی و مجموعه اعداد صحیح و طبیعی و ... بینهایت است. (تعداد اعضای هر مجموعه را عدد اصلی می‌نامند) در ریاضیات پیشرفته ثابت می‌شود که عدد اصلی مجموعه اعداد حقیقی و صحیح با یکدیگر برابر نیست
منبع :
متن از bankemagale.blogfa.com

 

تاریخ انتشار : یکشنبه 6 اردیبهشت 1388 - 23:34


سیاه چاله ها در دنیای اعداد
طبقه بندی : ریاضیات - مقالات

در طبیعت هرگاه اشیا به سمت شی بخصوصی كشیده شده و در آن جذب شوند ( نا پدید شوند) به آن شی سیاهچاله گویند.

اعداد هم سیاهچاله های فراوانی دارند . كه به اختصار در مورد آن صحبت می كنیم .

همان طور که می دانید سیاه چاله ها به مکان هایی در فضا گفته می شود که همه سیاره ها و ستاره های اطرافشان را به درون خود می کشند . شاید باورتان نشود حتی نور را هم به سمت خود جذب میکنند ! راستی ! در فضای بی کران ریاضیات هم ،سیاه چاله داریم ...

هرگاه هر عدد طبق رابطه خاصی بصورت سری ادامه پیدا كند و در انتها برای هر عدد به ارقام مشترك برسیم به ارقام مشترك سیاهچاله گویند.

قبل از آشنایی با مفهوم سیاه چاله ها بیایید بازی زیر را انجام دهیم :

1- عدد دلخواه در نظر بگیرید.
2- تعداد ارقام آن و تعداد ارقام زوج وهمچنین تعداد ارقام فرد آن را کنار هم بنویسید . ( مثلاً اگر عدد 1479386 را در نظر بگیریم عدد 734 به دست می آید . )
3- اکنون برای عدد به دست آمده ، دوباره تعداد ارقام و تعداد ارقام زوج و تعداد ارقام فرد را به ترتیب کنار هم بنویسید ( مثلاً برای عدد 734 در بالا ، عدد 312 به دست می آید . )
4- توجه کنید که اگر عدد،رقم زوج یا رقم فرد نداشت بجای آن صفر بگذارید وعدد صفررابعنوان عدد زوج به حساب بیاورید .

چندین بار عملیات بالا را تکرار نمائید . چه اتفاقی افتاد !؟

اعداد دلخواه دیگری در نظر بگیرید و همین عملیات را چندین بار تکرار کنید .......
آیا به نتیجه خاصی رسیدید ! ؟
بله دوستان ، درست حدس زدید . بعد از چندین بار تکرار این عملیات همیشه به عدد 312 می رسیم .
حالا بیایید برای اعداد یک رقمی هم همین کار را انجام دهیم مثلاً برای اعداد 7 و 13 .
قشنگ بود ، نه !

مثال ::: سیاهچاله 1

ارقام 1 - 2 - 4 با رابطه زیر یك سیاهچاله است .

عددی در نظر گرفته اگر زوج بود آن را بر 2 تقسیم كنید و گرنه آنرا در 3 ضرب كرده و با 1 جمع می كنید سپس این كار را باز ادامه دهید و ....

هر عددی كه ابتدا در نظر گرفته باشید در آخر با این رابطه به ارقام 1 - 2 - 4 می رسیم .

مثلا عدد 10

1 ------- 2 -------- 4 -------- 8 -------- 16 -------- 5 -------- 10

قابل توجه دوست داران ریاضی این سیاهچاله یكی از معروفترین سئوالات ریاضی است كه تقریب 80 سال است که نه كسی آنرا به اثبات رسانیده یا مثال نقضی برای آن پیدا كرده است .

منبع :

مرکز ریاضیات


سودوکو
sudoku
طبقه بندی : ریاضیات - مقالات

تاریخچه:
سودوکو یا سادوکو مخفف عبارت ژاپنی “Suuji wa dokushin ni kagiru” به معنی عدد های بی تکرار است و نوعی جدول اعداد است که امروزه یکی از سرگرمی های رایج در کشورهای مختلف جهان بشمار می آید. سودوکو فقط یکی از نامهای این بازی است. در آمریکا این بازی به نام “number place “مشهور است. گفته می شود که این بازی ریشه در چین باستان دارد و در قرن ۱۷ میلادی به اتریش برده شد و بعد از آن به بقیه اروپا و آمریکا راه پیدا کرده، بعد از گذشت زمان های طولانی در دهه ی۸۰ میلادی در مجله های تفریحی ظاهر شد. اما در جایی دیگر نیز آمده است که نخستین جدول سودوکو را یک ریاضیدان اروپایی در قرن هجدهم طراحی کرده است .
در سالهای گذشته این جدول کاربرد عمومی خود را برای سرگرمی پیدا کرده و خیلی ها را به خود معتاد کرده است. این روزها سودوکو سرگرمی بسیاری از مردم جهان شده است، کتاب های مجموعه این جدول ها نیز در نشریات کشورهای مختلف به چاپ می رسد و بسیاری از روزنامه های مترویی در کشور های غربی جدول سودوکو را در صفحات سرگرمی خود گنجانده اند. میزان محبوبیت این بازی رو به گسترش به میزانی است که نسخه های نرم افزاری این بازی برای تلفن های همراه رواج پیدا کرده و حتی مسابقه های تلویزیونی حل سودوکو در کوتاه ترین زمان ممکن به راه افتاده است. این بازی در نمایشگاه بین المللی بازی و سرگرمی آلمان به عنوان محبوب ترین و پرطرفدارترین بازی شناخته شده است و همچنین قانون بسیار ساده و روشنی دارد.

قوانین بازی
سودوکو انواع مختلف ساده ، متوسط ، دشوار و خیلی دشوار دارد و بسته به تعداد خانه های خالی دشوارتر می شود. بازی سودوکو را از سه جنبه می توان طبقه بندی نمود. یکی از این جنبه ها مرتبط است با ساختار فیزیکی جدول و تعداد خانه های آن که حالات متفاوتی را در بر می گیرد. مورد دیگر با اعمال قوانین مختلف در بعضی از جداول گوناگون، البته بدون تغییر در قوانین پایه ای و بنیادین این بازی در ارتباط می باشد. در نهایت جنبه سوم رتبه بندی این بازی از درجه آسان تا دشوار می باشد.
نوع متداول سودوکو در واقع نوعی جدول است که از ۹ ستون عمودی و ۹ ستون افقی تشکیل شده و کل جدول هم به ۹ بخش کوچکتر تقسیم میشود.
حالا شما باید اعداد ۱ تا ۹ را در هر یک از جدول های کوچکتر بدون تکرار بنویسید، به صورتی که در هر ستون بزرگتر افقی یا عمودی هیچ عددی تکرار نشود . در واقع هم باید از تمام اعداد ۱ تا ۹ در همه ستون های عمودی و افقی استفاده کنید و هم باید مراقب باشید هیچ عددی تکرار نشود و در همه مربع های ۳ ستونی کوچکتر نیز به همین ترتیب همه اعداد ۱ تا ۹ بیاید و تکرار نشود. همیشه به عنوان راهنمایی چند عدد در جدول از قبل مشخص میشود تا بقیه اعداد را شما پیدا کنید .

روش حل:
ابتدا در تمام خانه های خالی جدول، اعداد را از یک تا نه می نویسیم.
سپس به سراغ یکی از اعدادی که از قبل توسط طراح نوشته شده می رویم و تمام اعداد مشابه آن را که در عرضش (بصورت افقی )قرار گرفته اند را پاک می کنیم و سپس یک خط افقی در بالای آن عدد می کشیم که مشخص باشد.
در این مرحله همانند مرحله قبل عمل می کنیم با این اختلاف که در تمام خانه های عمودی در بالا یا پایین عدد مورد نظر اعداد مشابه را پاک می کنیم وسپس با یک خط عمودی در کنار آن عدد آن را مشخص می نماییم .
اکنون باید اعداد مشابه عدد مورد نظر را در مربع نه خانه ای متناظر، پاک کنیم وعدد را با یک دایره بر دور آن مشخص کنیم.
فقط سه مرحله قبلی را در مورد تمام اعداد از قبل نوشته شده (اعداد چاپی) تکرار کنیم و کشیدن خطهای عمودی افقی و دایره را بر آن عددها نباید فراموش کنیم که این عمل می تواند به شما نشان دهد که کدام یک از قلم افتاده است.
وقتی که تمام اعداد چاپی با هر سه علامت مشخص شد کار ما تا این مرحله تمام شده است.
در این مرحله به دنبال خانه هایی می گردیم که فقط یک عدد در آنها باقی مانده و آن اعداد را پررنگ می کنیم.
ما باید در هر ستون نیز عددی را که فقط یکبار درآن ستون آمده را پیدا کنیم که این عدد یقینا جواب همان خانه است و این عدد را هم پررنگ کنیم.
اکنون در هر مربع نه خانه ای عددی را که فقط یکبار در این نه خانه آمده است را یافته و به عنوان جواب یادداشت می کنیم.
سایت هایی برای دانلود بازی:
sudokuoftheday.com
sudokuhints.com
123sudoku.com

منبع :

riazilog.com

تاریخ انتشار : دوشنبه 13 آبان 1387 - 22:38

دایره
Circle
طبقه بندی : ریاضیات - مقالات

مقدمه
اشکال هندسی در زندگی همیشه دارای کاربردهای فراوان بوده و برای فعالیتهای انسان الهام بخش و سمبل نیز شده است. دایره یکی از این اشکال است. ابتدایی‌ترین کاربرد دایره ، چرخ و چرخ‌دنده‌ها هستند که از قدیم‌الایام بکار رفته و می‌روند. همچنین ابزار آلات زینتی چون تاج ، گردبند ، خلخال و حلقه‌ها ، کاربردی به اندازه تاریخ بشری دارند. نمونه مثال زدنی حلقه ازدواج است که بین زوجین مبادله می‌شود و این برگرفته از حلقه‌ای است که در دست اهورامزدا در پیکره‌ها و مجسمه‌ها دیده می‌شود.

با توجه به قرینه مذهبی قداست و پاکی ازدواج در ایران باستان را نشان می‌دهد که اکنون فرهنگی جهانی گشته است. دایره در فرهنگها ، انجمنها ، شهرسازی ، اندیشه‌های هنری و ریشه‌دار بخصوص در ابزار آلات نجومی جایگاه نمادین و کاربردی دارد. در فرهنگ و ادیان قدیم ازجمله بودا ، نماد آسمان ، جهان پاک ، افلاک گردنده و غیر دنیاست در حالی که در مقابل دنیا چهار گوشه و مربع است که به وضوح در بیان اشعار و ادبیات ایرانی بویژه غزلیات عرفانی مشاهده می‌شود.
دایره در هنرهای اسلامی ایران
در هنرهای اسلامی ایرانی دایره‌ها ، به شکل شمس و حلقه نورانی در اطراف سرایمه و بزرگان دین دیده می‌شود. همچنین با توجه به کراهت صورتگری و مجسمه سازی در اسلام و ظریف اندیشی شیعه ، هنرهای اسلامی به شکلهای اسلیمی ، گل و بوته ، نقشهایی ختایی سوق داده شد. اشکال و خطوط و ترکیب رنگ در مینیاتورها ، تذهیبها و فرشها با زینت و ترکیب و نقش نگار پخته‌تری تکامل یافتند.

دایره به شکل شمسه‌های زیبایی تزیین داده شد و شمسه‌ها به صورت منفرد یا در سایر هنرها کاربرد یافت. در خطوط گل و بوته و اشکال اسلیمی و ترکیب رنگ دایره به عنوان پایه‌ای‌ترین ، اصلی‌ترین و اساسی‌ترین شکل بکار گرفته می‌شود. و سیر کلی به سوی مرکز برای وصل فنا نقطه‌ای (سیاه) است. که اختیار را از چشمان بیننده گرفته و با سیر در تابلو به مرکز هدایت می‌کند.
دایره و نقطه سیاه و قرمز
در میان قبایل بدوی و بسیاری از انجمنها و دسته‌های سری قدیم ، سمبل مفاهیمی چون ابدیت ، جاودانگی و مرگ بوده است و دایره سیاره و دوایر متحدالمرکز در تمرینات اساسی ماینه‌تیستها ، هیپنوتیستها و درمانگران حرفه‌ای می‌باشد. دایره و نقطه سرخ که اغلب نشان آفتاب می‌باشد در پرچم و سمبل ملل شرق آسیا نیز مشاهده می‌شود.
هفت شهر
بطلیموس در دو قرن پیش از میلاد بر اساس تفاوت حرارت ، سرزمینهای شناخته شده آن روزگار را به هفت اقلیم تقسیم کرده است از آنجا که تقسیم بندی بطلیموس بر اساس دایره‌های مداری است اقلیمهای هفت گانه را اقلیمهای هندسی نیز نامیده‌اند. به نظر صاحبنظران ، اصطلاح هفت شهر ، هفت اقلیم و هفت وادی که در ادبیات و حکمت ایرانی وارد شده است الهامی از نظریات بطلیموسی را در خود دارد. اجرام آسمانی به دو دسته ثوابت و اجرام متحرک و متغیر تقسیم بندی شد و اجرام متغیر شناخته شده آن روز ، خورشید ، زمین ، بهرام ، تیر ، عطارد ، مشتری و زحل هر کدام در مداری و آسمانی تصور شدند. آسمان اول ، آسمان دوم … تا هفت آسمان.
دایره و نجوم
کره زمین برای شناسایی بهتر به دایره‌های افقی به نام مدار از صفر استوا تا ۹۰ درجه قطبین و دایره‌های عمودی به نام نصف‌النهار تقسیم بندی می‌شود. در علوم قدیم دایره بیشترین کاربرد و برترین جایگاه را در علم نجوم دارد. اولین مدلهای منظومه‌ای بر اساس گردش زهره در فرهنگ اینکاها ، گردش خورشید و کاینات دور کلیسا و زمین ، تا گردش زمین و سیارات دور خورشید در نجوم اسلامی و قوانین حاکم بر حرکت آنها بر روی مسیرهای دایروی بودند. مدلهای اتمی بعد از نظریه جوزف تامسون نیز هسته متمرکز در مرکز (بار مثبت) و الکترونهای متحرک در مدارهای دایروی بود. که به دلیل شباهت به مدل منظومه‌ای مشهور گشت.

بعدها تیکوبراهه ، کپلر ، کپرنیک روی این نظریه‌ها کار کردند. در سال ۱۶۱۹ کپلر سه قانون حرکت سیارات را با استفاده از مشاهدات تیکوبراهه بیان کرد. قوانین کپلر پایه و اساس قوانین نیوتن و مکانیک کلاسیک و مکانیک سماوی شد. در این نظریه مسیر دایره به مسیر بیضوی که خورشید در یک کانون بیضی قرار دارد تغییر یافت. با مطرح شدن فیزیک نوین و فیزیک کوانتومی ، اصل عدم قطعیت و سایر پیشرفتهای تکنولوژیکی مدل منظومه‌ای هسته نیز به مدل ابر الکترونی تبدیل گشت.
نگاهی به رصدخانه مراغه
این رصدخانه در زمره پیشگامان نجوم ایران و دنیای قدیم بوده و جایگاه بی‌نظیری برای خود دارد. مهمترین دوره و مکتب نجومی ایران مکتب مراغه بود که به گفته پروفسور عبدالسلام رصدخانه‌های هنر با وجود رگه‌های هنری اساسا بر پایه رصدخانه‌های اسلامی ساخته شده است. در این میان مکتب مراغه با نام خواجه نصیر‌الدین طوسی با سمت گیری انتقادی نسبت به نظام بطلیموسی به دلیل مشکلات جدی و ناسازگاریهای ذاتی موجود اخترشناسان بر اساس مدل هندسی نجومی ارایه شد که به جفت طوسی معروف گشت. ایجاد حرکت خطی به کمک حرکتهای دورانی یکنواخت است. ساختمان اصلی این رصدخانه به شکل استوانه طراحی شده بود. اکثر وسیله‌های رصدی در آن شکل دایروی داشتند از مهمترین وسیله‌های رصدخانه مراغه می‌توان به موارد زیر اشاره کرد.
وسایل رصد خانه مراغه
سدس فخری که بعدها با اصلاح به دوربینهای تیودولیت معروف گشتند که کاربردهای نقشه برداری دارد. وسیله دیگر ربع بود. این آلت از ربع دایره و عضاده‌ای تشکیل یافته و با آن میل کلی و ابعاد کواکب و عرض بلد را رصد می‌نمودند و بر سطح دیواره شمالی و جنوبی رصدخانه نصب شده بود. وسیله دیگر ذات‌الحلق بود که که به جای ششگانه بطلیموس و نه حلقه ثاون اسکندرانی جامع‌تر بوده است.

آلتی است متشکل از پنج حلقه به ترتیب الف برای دایره نصف النهار که بر زمین نصب شده بود. ب برای دایره معدل النهار ج برای دایره منطقه‌البروج د برای دایره عرض و ه برای دایره میل. از آلات دیگر رصدخانه مراغه ذات‌الجیب و ذات‌السمت بودند که برای تعیین ارتفاع در کلیه جهات مختلف افق بکار رفته می‌شد. ذات‌الربعین که به جای ذات‌الحلق استعمال می‌شد. ذات‌الارسطوانتین و دایره شمسیه از وسایل دیگر رصد خانه هستند.
نگاهی به استفاده از دایره برای رفع مشکلات شهرها و شهرسازی
توسعه شهرها ، تامین نیازمندیهای آنان ، چاره‌جویی برای توسعه‌های آینده شهر ، اتخاذ تصمیماتی که بتواند مشکلات شهری را به حداقل برساند و بالاخره آنکه چگونه رابطه منطقی بین انسان با محیط طبیعتش حفظ شود، به تحولاتی در امر شهرسازی منجر شد. نخستین نظریه در زمینه شهرسازی شخصی به نام هیپوداموس (۴۸۰ سال قبل از میلاد) بود و بعد از آن نظریات و راهکارهای متفاوت شهرسازی بوجود آمد. ولی پیدایش دانش امروزی شهرسازی به قرن نوزده میلادی می‌رسد. از میان نظریه‌های شهرسازی می‌توان نظریه‌های زیر را نام برد.
نظریه متحدالمرکز
در این نظریه الگوی ساخت شهر بر این اصل استوار است که توسعه شهر از ناحیه مرکزی به طرف خارج شهر صورت گرفته و تعداد مناطق متحدالمرکز را تشکیل می‌دهد. این مناطق با ناحیه مشاغل مرکزی شروع شده و بوسیله منطقه در حال تحول احاطه می‌شود.
نظریه قطاعی
تعدیل و تغییر در جهات مختلف این نظریه است. شهرها برای همیشه نمی‌توانند حالت متحدالمرکزی مناطق را حفظ کنند. در این نظریه اجازه خانه به عنوان راهنما مطالعه شهر را عملی می‌سازد. ساخت واحدهای گرانقیمت از کانون اصلی در طول شبکه‌های رفت و آمد ، ساخت واحدهای مسکونی دیگر و ارزان‌تر به سوی فضاهای باز و جابجایی ساختمانهای اداری و تجاری ، توسعه واحدهای مسکونی گرانقیمت را در جهت عمومی عملی سازد. آپارتمانهای لوکس در مجاورت بخشهای تجاری و مسکونی قدیمی بوجود آمده و واحدهای گرانقیمت شهر بطور اتفاقی و نامنظم جابجا نمی‌شوند. راههای شعاعی از مرکز شهر به اطراف کشیده می‌شود و عامل دسترسی به این راهها و قیمت زمینها را در مناطق مختلف شهر تعیین می‌کند.
مدل حلقه‌ای
در این مدل به جای آنکه خطوط اصلی حمل و نقل به صورت خطی گسترش یابد به شکل دایره‌ای و به موازات مرکز شهر ، حواشی ناحیه مرکزی و بافتهای اطراف آن را احاطه می‌کند. و دور تا دور بافت را گره‌های شهری بوجود می‌آورد. و فعالیتها شکل حلقه‌ای یا زنجیره‌ای به خود می‌گیرند.
طرح مکمل مدل کهکشان
بر اساس نظریه ویکتورگروین در بیشتر شهرهای بزرگ کاربرد دارد. شهر از مراکز متعددی تشکیل یافته و هر کدام واحدهای دیگری را بوجود می‌آورد و بوسیله شبکه‌های ارتباطی مشترک و مستقل و منطقه‌ای بافتها به همدیگر مرتبط می‌شوند. مجموعه این بافتها و شبکه‌ها یک شبکه کهکشانی را بوجود می‌آورد. خدمات مرکزی در وسط بافت و جایگاه صنایع در نواحی اطراف شهر و در خارج از بافت اصلی پیش‌بینی شده است.
دایره در مثلثات و فیزیک
از دایره‌های مشهور دیگر دایره مثلثاتی است. دایره مثلثاتی دایره‌ای است با درجه‌بندی و جهت حرکت مشخص که به آن جهت مثلثاتی گویند و آن پادساعت گرد یا عکس ساعت گرد است. شعاع این دایره واحد است و حداکثر مقدار توابع مثلثاتی سینوس یا کوسینوس که در این دایره بدست می‌آید می‌تواند واحد شود. هارمونیها و هماهنگها ، چرخش ، حرکت دورانی ، حرکات پریودیک و دوره‌ای ، حرکات تناوبی ، حرکات رفت و برگشتی در یک مسیر مشخص را می‌توان توسط این دایره و کمیات مثلثاتی برای بیان مکان و زمان و توصیف این حرکات و موقعیت بکار برد.
دایره در ورزشهای باستانی و موسیقی
دایره با توجه به نماد آسمانی و قداست افلاکی در ورزشهای باستانی از جمله زورخانه و گوی بازی ورزشکاران باستانی کار ، در رقص سماء و حلقه گردش و لباس و کلاه آنها ، نیز کاربرد دارد. در مکاتب هادی همچون کومونیسم نیز همچنان که در فیلم بایکوت مشاهده می‌کنیم. به عنوان سمبل بکار رفته است مسیری که از هیچ آغاز شده و در سیر مسیر به هیچ منتهی می‌شود.

اساس موسیقی و هنرهای ادبی شرقی موسیقی دوری است. موسیقی و هنری که انسان را در جای خود از حالی به حالی دگرگون می‌کند از نقطه‌ای شروع شده و او را به سیر در عالم معانی برده و در آخر انسانی ارزشی ، تحول یافته و والا‌مقام و انسانی که شایسته خلیفه الهی است بوجود می‌آورد.

منبع :

academist.ir

تاریخ انتشار : شنبه 11 آبان 1387 - 23:0




Admin Logo
themebox Logo